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vation of the high accuracy feature, which is not addressed
in [8, 9], is generally not trivial, because embedding meth-In order to solve partial differential equations in complex geome-

tries with a spectral type method, one describes an embedding ods usually produce solutions in g that are poorly regular
approach which essentially makes use of Fourier expansions and at the boundary of the complex domain V, thus inducing
boundary integral equations. For the advection–diffusion equation, Gibbs phenomenon.
the method is based on an efficient ‘‘Helmholtz solver,’’ the accuracy

The goal of this study is to produce a highly accurateof which is tested by considering 1D and 2D Helmholtz-like prob-
embedding method, applicable to conservation equationslems. Finally, the capabilities of the method are pointed out by

considering a 2D advection–diffusion problem in a hexagonal such as the unsteady advection–diffusion equation or the
geometry. Q 1996 Academic Press, Inc. unsteady incompressible Navier–Stokes equations (spec-

tral methods are not well adapted to the compressible
Navier–Stokes equations, due to the possibility of shocks).

1. INTRODUCTION When using some appropriate finite difference semi-im-
plicit scheme in time, this requires accurate procedures forAs is well known, geometries of complex shape are still
the solution of elliptic linear problems. This can bedifficult to handle, especially for 3D problems, even with
achieved by the proposed embedding method, which isthe help of automatic mesh generators of structured or
based on a combination of Fourier approximations andunstructured grids. As an example, let us mention the nu-
boundary integral equations. Essentially, this results in themerical computation of heat transfer in moulds, where the
use of two independent meshes, a regular and structuredgeometries are generally very complex (see, e.g., [1]). This
mesh for the simple cartesian geometry, and a boundaryis the reason why, for about 25 years it has been considered
element mesh for the complex domain. Moreover, one canthat embedding methods can give a satisfying alternative
say that the method is highly vectorizable or/and paralleli-way for handling complex domains (see, e.g., [2]).
zable.Let us recall that the basic idea is to solve a given partial

The paper is composed of four main parts (Sectionsdifferential equation (PDE) in a simple cartesian domain
2–5). In Section 2 we present the basic principles of theg in which the complex domain V is embedded. Such
approach, by focusing on the unsteady advection–diffusionapproaches, known as fictitious domain methods [3], mask
equation. Then, the details of the method are describedmethods [4], etc. have been applied to different kinds of
in Section 3, concerning the Fourier analysis, and in SectionPDE, such as linear elliptic equations but, also, in fluid
4, concerning the boundary element approach. Finally, indynamics to the Euler or Navier–Stokes equations, or in
Section 5, we produce some numerical tests in order toelectromagnetism to the Maxwell equations [5–7]. To our
give measurements of the accuracy of the method and toknowledge, the closest approaches to the one described in
outline its capabilities.this paper were presented, in a different context, in [8, 9].

In these references, devoted to the development of the
boundary element method, the authors handle the body
force term by using a Fourier expansion in a larger 2. DESCRIPTION OF THE METHOD
cartesian domain.

Embedding methods should be especially interesting In a complex (i.e., non-simply connected, non-convex)
bounded 2D or 3D domain V of boundary G, let us considerwhen combined with spectral methods (Fourier analysis,

wavelets, etc.), since the high accuracy of spectral methods the following unsteady advection–diffusion problem, in
dimensionless form:is currently reserved for simple geometries. But the preser-
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­tu 1 v ? =u 5
1

Pe
Du 1 g

u(t 5 0) 5 u0 (1)

uuG 5 uG ,

where the different variables stand for

t, time,
Pe, Peclet number,
g, given time and space dependent body force term,
v, velocity vector, which can be time and space depen-

dent or a function of u, e.g., from the Navier–Stokes equa- FIG. 1. Embedding method principle.
tions,

u0 , space dependent initial condition.

For the sake of simplicity, the boundary conditions are (3) In g, determine the Fourier approximation of the
assumed to be of Dirichlet type, but as outlined later in periodic solution ũ of: Dũ 2 sũ 5 f̃.
the text, all kinds of linear boundary conditions can in fact (4) In V, using a boundary element approach, solve:
be treated. Dv 2 sv 5 0, vuG 5 uG 2 ũuG .

Discretization in time. An efficient way to handle the (5) Superimpose ũ and v : u 5 ũ 1 v.
PDE (1) is to use a finite difference implicit or semi-implicit

Let us remark that in the case of Neumann boundaryscheme for the linear terms and an explicit one for the
conditions one has simply to modify point (4) with theconvective term. This yields, at each time-step, the linear
boundary condition: ­nvuG 5 (­nu)G 2 ­nũuG .elliptic problem

Section 3 is devoted to points (2) and (3) of the algorithm
while in Section 4 we focus on point (4). Point (1), which

Dun11 2 sun11 5 f n11

(2) is also not trivial because it involves the computation of
the gradient of u, is also considered in Section 4.un11uG 5 un11

G ,

3. FOURIER PART OF THE ALGORITHMwhere the superscript is the time index. For instance, when
using, as in Section 5, a second-order backward Euler–

The main point here is to produce the periodic functionAdams–Bashforth scheme, one obtains
f̃ such as f̃ uV 5 f. This function f̃ must be as smooth as
possible in order to preserve, as much as possible, the
spectral accuracy of the Fourier solution ũ of the periodics 5

3Pe
2t

, f n11 5 Pe F24un 1 un21

2t
1 2(v ? =u)n

(3) problem. For instance, the extension of f by the zero func-
tion would induce a C0 discontinuity of f̃ and, consequently,
a second-order accuracy of the solution, instead of the2 (v ? =u)n21 2 gn11G.
spectral accuracy.

The goal is first to produce an efficient solver of Eq. (2), 3.1. One-Dimensional Analysis
for which the time index is dropped hereafter.

For the sake of simplicity, let us first assume that the
The present embedding method is based on the idea of problem is 1D, and introduce a regular cartesian mesh of

using the Fourier approximation, to handle the body force g 5 ]0, L[, such as hxi 5 ihj, 0 # i # I 2 1; h 5 L/I.
term f, and a boundary element approach to force the Using the discrete Fourier expansion, in order to force the
boundary conditions. This splitting makes use of the linear- periodicity, f̃ may be written
ity of Eq. (2).

As shown in Fig. 1, the domain V is now embedded in a
f̃(xi) 5 Ok5I/2

k52I/211
f̂̃keikXi, i2 5 21, 0 # i # I 2 1, (4)simple cartesian domain g. The algorithm is the following:

(1) In V, compute the source term f ;

(2) In g, look for a periodic function f̃ such that f̃ uV 5 where Xi is the reduced value of xi : Xi 5 2fxi/L. Introduc-
ing the real and complex vectors f̃ and f̂̃, whose compo-f ( f̃ uV stands for the restriction of f̃ to the domain V);



466 ELGHAOUI AND PASQUETTI

nents are the f̃(xi) and the f̂̃k , expression (4) yields the one can show that the continuous solution of the optimiza-
tion problem (8) solves:matrix relation:

f̃ 5 F f̂̃, Fik 5 eikXi. (5) D2pf̃ 5 0 in g\V.

The I 3 I complex matrix F can be partitioned into F1 Due to the proportionality of the L2
per(g) norm in physi-

and F2 , according to whether the collocation points belong cal and Fourier spaces (Parseval identity) in the framework
to V or g\V: of the 1D situation the optimization problem (8) reads

minuLp f̂̃u2, F1f̂̃ 5 f, (9)
F 5FF1

F2
G. (6)

where L is the real diagonal matrix such as (K 5 I/2):
Then the extension problem reads, with the vector f of
the f(xi): L 5 diagh(K 2 1)2, (K 2 2)2, ..., 1, 0, 1, ..., (K 2 1)2, K 2j.

(10)
F1f̂̃ 5 f. (7)

At this point, let us produce the classical (but here false)Such a problem is clearly underdetermined, but this is not
solution of the quadratic optimization problem under lin-surprising since the extension is not unique.
ear constraints (9),One simple way to proceed, in order to recover the

uniqueness, is to set to zero the highest Fourier modes of
f̃ . In physical space, such an approach is equivalent to using f̂̃ 5 L22pF*1 (F1L

22pF*1 )21f, (11)
trigonometric interpolation polynomials defined only with
the mesh points interior to V. It has been checked that

and make the two following remarks:
this approach is only satisfactory if the variations of the
function f are very smooth. In the case of a stiff gradient —solution (11) is not correct because the matrix L is
of f inside V, one observes very large values for f̃ in g\V. not invertible (det(L) 5 0). This difficulty can be overcome,

The classical way to proceed with underdetermined sys- using a two-step analytical development in which the first
tems like (7) is to introduce a constrained optimization step is devoted to the determination of the optimal values
problem, where the functional to be minimized is generally of the f̃̂k , k ? 0, and the second step to the determination
associated with a norm or semi-norm of the solution. The of the optimal real f̂̃0 .
point is then to make an appropriate choice of such a —solution (11) requires inverting and then handling a
functional, thus leading to (i) a satisfactory result and (ii) very large matrix, within the brackets, since the dimension
an efficient algorithm. Moreover, this choice must not be of this matrix is equal to the number of collocation points
restricted to the 1D geometry. Coming back to the multidi- inside V.
mensional geometry, the algorithm used hereafter to pro-
duce a ‘‘regular’’ extension is based on the constrained Because of the second remark, which is quite unacceptable
optimization problem in a multidimensional context, one has to produce the right

solution in a form where such a matrix does not appear.
Let us introduce the vector g of the collocation pointminuDpf̃ uL2

per(g) , f̃ uV 5 f, (8)
values of f̃ in g\V, in such a way that

where D is the Laplacian operator and L2
per(g) is the space

of the square integrable periodic functions in g. In this f̃ 5 Ff

g
G. (12)

expression the parameter p has to be taken as high as
possible (from numerical considerations), since the regu-
larity of f̃ is clearly associated with its value. Indeed, from Since the discrete Fourier transform (DFT) is associated
(8), the functional space of f̃ is essentially the Sobolev with the matrix F*/I, problem (9) can be written as
space H 2p

per(g) of the square integrable periodic functions
of which the derivatives up to degree 2p are also square
integrable. Thus, with p 5 0 (and D0 5 Id, Id: identity minULp[F*1 F*2 ] Ff

g
GU2

. (13)
operator) one recovers in g\V the zero function. Moreover,
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The optimal value of vector g is obtained by setting to 0 the where [?] stands for the integer part function. Then in (5),
the elements of F readderivative of expression (13) with respect to g. This yields

Fik 5 eik?Xi (17)g 5 2(F2L2pF*2 )21F2L2pF*1 f. (14)

with k for the (k1 , k2) vector and Xi for the reduced positionUsing the DFT of (12) one gets then the Fourier spectrum
vector of point i. Further 2D developments are similarof f̃.
to the 1D ones. The diagonal matrix L, defined in (10),One observes in Eq. (14) that the matrix L is no longer
now readsinverted and that the matrix within the brackets is now

associated with the external collocation points. Its dimen-
L 5 diaghuku2j, 2K1 1 1 # k1 # K1 ,

(18)sion is thus equal to the number of collocation points in
2K2 1 1 # k2 # K2 ,g\V, which can be assumed small, especially for 1D prob-

lems. Concerning the involved calculations, one can ex-
and one has instead of (15)press the following remarks:

—the operator F*1 can be handled by using a DFT of f
[F2L2pF*2 ]i j 5 O

k
uku2peik?(Xi2Xj). (19)extended with the zero function in g\V.

—the operator L2p reduces to a scaling

—the operator F2 can be handled by using an inverse In the multidimensional context it is again desirable to
DFT and then keeping the values at the collocation points decrease the dimension of the matrix defined in (19). This
out of V. can be achieved by fixing the values of f̃ at the external

collocation points that are ‘‘away’’ from V. Then, instead—the matrix in the brackets can be directly expressed,
of computing the extension for all the external points one
has only to consider the strip of points close to V (as shown

[F2L2pF*2 ]i j 5 O
k

k2peik(Xi2Xj), (15)
in Fig. 2). This only requires considering the non-simply
connected domain V9, including both the points of V and
the points away from V, instead of V. Then, the dimensionwhere both xi and xj are outside of V. Its computation can
of the vector g, in (12), or of the matrix F2 , is lowered tobe made very easy by showing that the matrix element
the number of the collocation points of g\V9.values are all issued from the inverse DFT of the set hk2pj,

2K 1 1 # k # K. Moreover, one can show that this
3.3. Solution of the Periodic Problemsymmetric matrix is positive definite.

In Fourier space the solution to the periodic problem,
3.2. Multidimensional Analysis

The previous developments can be easily extended to Dũ 2 sũ 5 f̃, (20)
the nD complex geometries (e.g., multiply connected ge-
ometries). For the sake of simplicity, let us focus on the is straightforward, since the Helmholtz operator is then
2D case. diagonal. In the multidimensional context,

In Eq. (4), one has to substitute to the 1D Fourier expan-
sion the 2D one. Then, in order to get an equation similar
to (5), one has to arrange the f collocation point values as
well as the associated 2D-spectrum in 1D-vectors. With i1

(0 # i1 # I1 2 1) and i2 (0 # i2 # I2 2 1), associated with
the x and y directions, this only requires the introduction
of a compact bijective relation between indices i such as
0 # i # I1I2 2 1 and the index-pairs (i1 , i2). Similarly, in
spectral space, with k1 (2K1 1 1 # k1 # K1) and k2

(2K2 1 1 # k2 # K2) for the x and y directions, one needs
a compact bijective relation between indices k and the
index-pairs (k1 , k2). One that is well suited is

k 5 k1 1 k22K1;
(16)

FIG. 2. Continuation strip notion.k2 5 [(k 1 K1 2 1)/2K1], k1 5 k 2 k22K1 ,
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û̃k 5 f̂̃k/(2uku2 2 s), (21)

where again a bijective relation like (16) is used. Moreover,
the gradient of ũ can be easily expressed:

=ũk 5Fik1û̃k

ik2û̃k

G. (22)
`

It is interesting here to come back to the 1D situation,
because the solution of the homogeneous problem (see
point 4 of Section 2)

Dv 2 sv 5 0, vuG 5 uG 2 ũuG (23)

may be written down explicitly. In a domain ]0, Dx[ it
reads, with s9 5 Ïs,

v(x) 5
v(Dx) sinh(s9x) 1 v(0) sinh(s9(Dx 2 x))

sinh(s9 Dx)
. (24)

Thus, in the 1D situation, one does not need the boundary
element solution and one can produce a first test-case for
the Helmholtz equation. In Figs. 3a,b,c are given the peri-
odic extension f̃, the periodic solution ũ, and the final
solution u for the academic test-case

V 5 ]0, f[, g 5 ]0, 2f [, s 5 1, uexact 5 cos(x/2),

where the boundary conditions and the force term f are
derived from the exact solution. These numerical results
have been obtained with p 5 1.

For the highest values of the number of collocation
points, the extension of f̃ in g\V can be analytically recov-
ered, since with p 5 1 the continuous solution is such that
(see Eq. 9)

D2f̃ 5 0 in g\V; f̃ in H 2
per(g). (25)

For the 1D test problem considered here this implies:
FIG. 3. One-dimensional Helmholtz problem: (a) periodic extended

— f̃ ug\V is a polynomial of third degree. source term; (b) periodic solution; (c) final solution.

— f̃ is C1 continuous at G.

Such a remark can be extended to the cases p ? 1, for which
in the L2 norm, the accuracy order of the method is equalf̃ ug\V is a polynomial of degree (4p 2 1), C2p21 continuous
to 2(p 1 1). As shown in Fig. 4, for the previous 1D test-at G.
case, the order of accuracy is approximatively equal to 4,These considerations are directly connected with the
which is the value obtained with p 5 1.accuracy of the spectral solution. Indeed, it is a classical

result from functional analysis that if the source term of
a second-order elliptic equation is in H 2p

per(g), then the 4. BOUNDARY ELEMENT PART OF THE ALGORITHM
solution is in H 2p12

per (g), and that the L2 norm of the error,
between the exact solution and its Fourier interpolant, is The aim is now to solve the homogeneous problem (23),

for which the solution is not straightforward in the multidi-then decreasing like h2p12 (see, e.g., [10]). Consequently,
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all these methods generally yield a matrix system, for the
boundary nodes, of the form

(C 1 H)v 5 Gq, (29)

where v and q are the vectors of the boundary node values
of v and ­nv. With N the number of boundary nodes, C is
the N 3 N diagonal matrix of the coefficients cM (C 5
Id/2 for Lagrangian elements). G and H are geometry
dependent N 3 N matrices involving boundary integrals
of the fundamental solution and of its normal derivative re-
spectively.

At this point, let us mention that the best accuracy of the
BEM is obtained when using, instead of local polynomial
approximations, global approximations for both the geom-

FIG. 4. One-dimensional Helmholtz problem: accuracy of the solu- etry and the function variations, as in [13], where one usestion vs the number of collocation points.
Fourier approximations. Indeed, in this case the approxi-
mation order is no longer finite but spectral, as soon as the
integrand singularities are analytically removed. In [14], an

mensional context. This can be done efficiently by using a equivalent result is obtained by removing the singularity
boundary element approach, since Eq. (23) is associated of the fundamental solution before using a trapezoidal
with a boundary integral equation (BIE) involving no do- quadrature method. Unfortunately, such attractive ap-
main integral. This BIE reads (see, e.g., [11]) proaches are no longer appropriate when singularities oc-

cur, both in the geometry or in the boundary conditions,
as is usual in the industrial context. Moreover, handlingcMvM 1 E

G
v­nv*M dG 5 E

G
v*M­nv dG, (26)

very complex geometries becomes non-trivial, especially
in 3D cases. On the contrary, Lagrangian elements, whichwhere M is a point of V, cM is a coefficient equal to 1 if
are discontinuous elements, are efficient to overcome the

M is in V and such that 0 , cM , 1 if M is on G (cM 5 0.5,
singularities and well adapted to the description of com-if G is smooth at M), ­n is the normal derivative operator. v*
plex geometries.is the fundamental solution of Eq. (23), i.e., a Green func-

Taking into account the boundary conditions, the usualtion such as in an infinite domain,
way to handle a discrete BIE like (29) consists in rearrang-
ing all the unknown components of v and q in an unknown

Dv*M 2 sv*M 1 dM 5 0. (27) vector and, then, to solve the resulting N 3 N linear alge-
braic system. When knowing all the boundary values of v

In the 2D case, this Green function reads, with s9 5 and ­nv, one can compute the internal values of v using
Ïs and r the distance to point M (see, e.g., [12]), the following discrete form of (26):

v9 5 2H9v 1 G9q, (30)v*M 5 1
1

2f
K0(s9r), (28)

where v9 is the vector of the values of v at N9 internal
where K0 is the modified Bessel function of the second points and H9 and G9 are N9 3 N matrices which only
kind and zero order, which presents, for r 5 0, a logarithmic depend on the geometry.
singularity and which exponentially decays at infinity. This direct approach was not used for the following

Using Eq. (26), the basic principle of the boundary ele- reasons:
ment approach is at first to solve on the boundary and,

(i) Equation (30) is not well suited for the computationthen, from the boundary values of v and of ­nv, to compute
of the gradient of the solution, which is needed for thethe internal values.
computation of the source term of the Helmholtz equationThe discrete form of Eq. (26) is obtained from the dis-
(see (3)). Indeed, the computation of the derivatives ofcretization of the boundary into boundary elements. Ap-
the elements of the matrix H9 requires introducing deriva-proaches of different approximation orders are then possi-
tives of each component of the gradient of v*.ble, e.g., as done in our 2D code, by using a linear or

quadratic approximation for the geometry and a linear (ii) Equation (30) is not very efficient for the computa-
tion of v at the internal points very close to the boundary;approximation for v (2-node Lagrangian elements). But
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when moving the point M from V to G, the boundary since for the computation of their elements one only needs
to substitute the unitary basis vectors ex and ey to the unitintegral of ­nv* is not continuous, this discontinuity being

associated to the jump of the coefficient cM . This generally outward normal vector n.
Until now the boundary conditions have been assumedresults in a less accurate numerical computation of some

of the elements of matrix H9. to be of Dirichlet type. By solving the problem on the
boundary, it is in fact always possible to recover this situa-

These remarks lead one to look for a more appropriate tion. To this aim, let us consider the general linear bound-
formulation. The following ‘‘single layer potential’’ ap- ary condition
proach [15, 16] yields a satisfactory result.

With cM 5 0, the BIE (26) holds outside V, i.e., in the
av 1 b­nvuG 5 h, (37)external domain Rn \V (n 5 2 in the 2D case). Inversely,

by considering the BIE equation obtained when consider-
where a, b, and h may be space dependent. In discreteing this external domain, the following relation holds in V:
form Eq. (37) reads

(1 2 cM)vM 2 E
G

v­nv*M dG 5 2 E
G

v*M­nv dG. (31) Av 1 BquG 5 h, (38)

In this equation the coefficient cM is the one considered where A and B are two diagonal N 3 N matrices of the
in (26) and the fact that the unit outward normal unitary coefficients a and b at the boundary nodes and h is the
vectors to the boundary of V and Rn \V are opposite is corresponding vector. Combined with (29), (38) yields,
taken into account. with H 5 C 1 H,

From (26) and (31) one gets the ‘‘single layer BIE’’
v 5 (A 1 BG21H)21h. (39)

vM 5 2 E
G

v*Me dG (32)
5. NUMERICAL TESTS

in which e stands for the jump at G of the normal derivative In order to point out the accuracy of the spectral embed-
of v. ding method, we are going to consider first a 2D Helmholtz

In discrete form, with m for the vector of the jumps at equation for which the analytical solution is known. This
the N nodes, Eq. (32) yields can be done by choosing a typical solution and then deriv-

ing analytically both the body force term and the boundary
v 5 2Gm (33) conditions. Then we will point out the capabilities of the

method, by solving a transient advection–diffusion
for the boundary nodes and problem.

5.1. Accuracy of the Methodv9 5 2G9m (34)

The domain that is considered is a hexagon, whose
for the internal points. The Dirichlet problem being well sides are tangent to a circle of diameter 1, centered at the
posed, matrix G is invertible and so (33) and (34) yield origin. Inside this hexagon, the exact solution reads

v9 5 G9G21v. (35)
ue 5 Af(1 1 tanh(ax))(1 1 tanh(ay)) (40)

As soon as v is known on the boundary, Eq. (35) is then
in such a way that 0 # ue # 1. The parameter a whichused to compute all the internal point values. Conse-
controls the stiffness of the solution is taken a P 7.22 inquently, in case of Dirichlet conditions one does not need
the calculations.to solve on the boundary, i.e., to compute vector q as

As shown in Fig. 5, the hexagon is embedded in a squarerequired by (30). Moreover, the computation of the gradi-
(side P 1.386). In order to decrease the memory storageent is now simpler since from (32) and (28):
(see Section 3), the extension is performed in a strip (see
Fig. 5). Its thickness is taken equal to a given multiple of
the Fourier mesh size.=vM 5 2 E

G

­v*M
­M

e dG 5 E
G

=v*Me dG. (36)
The following result has been obtained with s 5 1. In

Fig. 6a the function f̃ is shown; in Fig. 6b one has the
periodic solution ũ, and in Fig. 6c the numerical solutionIn discrete form, this leads us to introduce matrices H9x

and H9y (2D case) that are very similar to the matrix H9, u, inside the hexagon, is given. The computation has been
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FIG. 5. Schematic of the geometry.

achieved with a N 3 N 5 32 3 32 Fourier mesh, N9 5
120 boundary elements, and a 5-step strip for the extension
of the source term f. The ratio of the boundary element
size to the Fourier mesh size is r 5 0.6875. For different
values of N and N9, with the geometry considered in this
section, r 5 2.5 (N 1 1)/N9.

Concerning the computer requirements, one has to dis-
cern the preliminary calculations, which are made once,
and the solver itself, which will be used at each time step
of the unsteady problem. One can mention that on a
CRAY YMP the preliminary calculation, which essentially
consists in the computation, using a Gauss quadrature
method, of regular 1D integrals (routine QDAG of the
IMSL, relative accuracy 1026, maximum number of integra-
tion points 21) needs about 650 s and 1.43 Mw of memory
storage, whereas the solution of the Helmholtz equation
only needs 0.018 s (14% for the extension procedure and
86% for the Fourier–BEM solution) and 1.44 Mw. As could
be expected, the major requirements of the method lay in
the computation time of the preliminary calculation and
in the memory storage, which is already important for a
32 3 32 Fourier mesh.

Concerning the computation accuracy of this first result,
the mean quadratic error between the analytical and nu-
merical solutions is equal to emq 5 5.3 3 1026, when the
mean quadratic value of ue is equal to 0.414. The maximum FIG. 6. Two-dimensional Helmholtz problem: (a) periodic extended
error is equal to emax 5 4.9 3 1025 and is located at (x 5 source term; (b) periodic solution; (c) final solution (extended with the

analytical solution (40) outside of V).0.563, y 5 0). Such a point is very close to the boundary.
As discussed later this is due to the boundary element
computation, which becomes less accurate when the points
of V are close to the boundary. This can be confirmed by the parameters N and N9. Such results are summarized in

Figs. 7a–b, where emq(N) and e9mq(N) are given for threeconsidering the mean quadratic error obtained for points
far from the boundary, e.g., inside a circle centered at the different values of N9 h30, 60, 120j. It is interesting to

observe that each schematic is divided into two regions,origin and of diameter equal to 0.8. Then one obtains
e9mq 5 1.2 3 1026. which we denote regions I and II. In region I, the mean

quadratic errors emq and e9mq are rapidly decreasing andIn order to go further into this study of accuracy, similar
calculations have been performed for different values of only depend on N, i.e., on the Fourier mesh, until they
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for N9 5 120. Clearly, in region II, for N 5 32 and N 5
64, the maximum errors are located near the boundary. It
is not the case for N 5 8 and N 5 16, which fall into region I.

The sensitivity of the boundary element calculation with
respect to the distance to the boundary does not come
from a poorly accurate computation of the matrix elements
(matrices G and G9) associated with the points nearest the
boundary. Indeed, all the integrals necessary for constitut-
ing the matrices G and G9 are computed with similar accu-
racy (relative accuracy 51026). The difficulty here comes
from the fact that this distance can become very small in
comparison with the boundary element size. In this case,
due to the stiffness of the modified Bessel function of the
second kind and zero order (see Eq. (28)) near 0, an accu-
rate calculation at the internal point requires a very accu-
rate solution along the boundary. But this one is not ob-
tained with the Lagrangian linear boundary element, which
simply assumes a linear variation of v and ­nv (see Section
3). This assumption was also confirmed by the improve-
ments that were obtained when the linear element was
substituted for the constant element, which assumes v and
­nv are constant along each element. In order to overcome
this difficulty one must either increase the approximation
order or use more boundary elements. In the two cases,
this results in increasing the number of boundary nodes.

For transient calculations, the value of the parameter s
is often high (s @ 1), generally due to the small value of
the time-step (see Eq. (3)) required by stability considera-
tions. It is then important to see if the method can supportFIG. 7. Two-dimensional Helmholtz problem: accuracy of the solu-

tion vs N (for a N 3 N Fourier mesh) and for different boundary element large values for this parameter. To achieve this goal, a
numbers N9, calculated from (a) all the collocation points or from (b) study of accuracy similar to the previous one and dealing
the collocation points away from the boundary. with the same exact solution (40), was performed for two

different values of s: s 5 102; s 5 104. The number of
boundary elements has been taken equal to N9 5 120.reach a limiting value associated with N9, i.e., with the

The results are presented in Figs. 8a,b, where again oneboundary element mesh. In region II, emq is slowly increas-
can discern regions I and II. In region I, where the accuracying with N from the limiting value defined by N9, when
of the periodic solution is dominant, the accuracy is bettere9mq remains nearly constant. Clearly, in region I the accu-
for the higher values of s. This is not surprising, sinceracy of the method is governed by the Fourier approxima-
increasing s tends to produce a more regular source term:tion, while in region II it is governed by the boundary
f 5 Due if s 5 0 and f 5 2sue if s 5 y. On the contrary,element calculation. In region II, the increase of emq results
when the boundary element accuracy is dominating in re-from the fact that once N is increased the distance between
gion II, one observes that increasing s yields a worse accu-the Fourier colocation points and the boundary is de-
racy. Moreover, the comparison of emq and e9mq clearlycreased. This can be confirmed by analysing the location
shows that again the accuracy is lost in the vicinity of theof the maximum error emax; these locations and the emax
boundary. This stems from the fact that for the support ofvalues are given in Table I, for different values of N and
the fundamental solution becoming very small (see Eq.
(28)), an increase in the number N9 of boundary elements

TABLE I is needed to improve the accuracy.
All the previous calculations were performed with a 5-Maximum Error Values and Locations

step strip for the extension of f. In order to investigate the
N 8 16 32 64 sensitivity of the method with respect to this parameter,

one can produce results obtained (i) with a narrow 3-step
emax 4.3 3 1022 8.3 3 1024 4.9 3 1025 3.2 3 1024

strip, (ii) with all the points of g\V (y-step strip), and (iii)x, y 0.173, 0.173 0.087, 0.433 0.563, 0 0.260, 0.500
with zero for the extension of f in g\V (0 step strip).



A SPECTRAL-EMBEDDING METHOD 473

TABLE II

Number of Collocation Points inside the Extension Strip

N 8 16 32 64

Inside hexagon 27 111 461 1871
y-step strip 37 145 563 2225
5-step strip 37 144 434 889
3-step strip 37 124 269 514

the results are given in Figs. 10a–b. The interest of using
an extension strip is here obvious. Moreover, one observes
that the convergence rate is now smaller and consequently
that N $ 64 collocation points are now necessary to reach
region II.

This study of accuracy yields the following main conclu-
sions:

—in region I, where the periodic solution accuracy is

FIG. 8. Two-dimensional Helmholtz problem: accuracy of the solu-
tion vs N (for a N 3 N Fourier mesh) and for different Helmholtz
coefficients, calculated from (a) all the collocation points or from (b) the
collocation points away from the boundary.

In Figs. 9a,b the variations of emq and e9mq with respect
to N, N9 5 120, for the 0-step, the 3-step, the 5-step, and
the y-step strips, are given. One observes that the results
obtained when using the 3-step, the 5-step, and the y-step
strips are nearly the same. For the smallest values of N,
all the results are even identical, because the cartesian
domain is then itself embedded in the external hexagon
of Fig. 5! In Table II the numbers of collocation points
located in the hexagon and in the strip, for these three
cases and for different values of N, are given. The second
number is equal to the dimension of the matrix defined
in (19).

Concerning the 0-step strip, one observes in Fig. 9 that
the convergence rate is worse. But for the highest values
of N one gets approximately the limiting accuracy, gov-
erned by N9, obtained with the extension strips.

FIG. 9. Two-dimensional Helmholtz problem: accuracy of the solu-
The previous results were obtained for the Dirichlet tion vs N (for a N 3 N Fourier mesh) and for the h0, 3, 5, yj extension

problem, which is not the best way to point out the Gibbs strips, calculated from (a) all the collocation points or from (b) the
collocation points away from the boundary.phenomenon effect. With Neumann boundary conditions,
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5.2. Solution of an Advection–Diffusion Test Problem

In order to investigate the capabilities of the method,
a 2D advection–diffusion transient test problem in the
hexagon of Section 5.1 (see Fig. 5) is investigated. To this
aim, the semi-implicit second-order scheme defined in Sec-
tion 2, Eqs. (2) and (3), is used. In order to recover some
classical behaviours, the 2D problem is chosen in such a
way that its asymptotic solution uy is 1D and:

­yuy 5
1

Pe
­yyuy , uy(y 5 20.5) 5 1, uy(y 5 0.5) 5 0.

(41)

The analytical solution of this stationary 1D problem is
well known:

uy 5
ePe(y10.5) 2 ePe

1 2 ePe . (42)

It is characterized by a boundary layer, at y 5 0.5, the
thickness of which is O(1/Pe).

The transient 2D problem that has been chosen reads:

­tu 1 v.=u 5
1

Pe
Du, v 5 (0, 1)t

u(t 5 0) 5 0 (43)

uuG 5 uyuG .
FIG. 10. Two-dimensional Helmholtz problem with Neumann bound-

ary conditions: accuracy of the solution vs N (for a N 3 N Fourier mesh) For such a problem x 5 0 is a symmetry axis, parallel toand for the h0, 3, 5, yj continuation strips, calculated from (a) all the
the direction of the flow. In the half-plane y , 0, one hascollocation points or from (b) the collocation points away from the
the hexagonal inflow boundary and in y . 0, the hexagonalboundary.

outflow boundary.
The problem was solved for three different values of

dominant, the rate of convergence is high. With s 5 1, the Peclet number: Pe 5 h1, 10, 100j. For the computation
it can be estimated greater than 6.4 for the Dirichlet

one has used N9 5 120 boundary elements, a 128 3 128
problem and greater than 3.8 for the Neumann problem.

Fourier mesh, and a 5-step extension strip. The time step
This last value is better in agreement with the value of

was taken equal to 5 3 1023. Let us also mention that in
4 to be expected for calculations done with p 5 1 (cf.

(43) the gradient results from the superposition of the
Section 3).

Fourier and the boundary element components of the solu-
—the boundary element size must be chosen small tion, from Eqs. (22) and (36).

enough to remain in region I, since in region II an increase In Figs. 11a–b to 13a–b, for the different values of the
of N yields a loss of accuracy. Nevertheless, since increasing Peclet number, the variations of u at different times (a)
N9 in region I does not improve the results, it is preferable along the streamwise symmetry axis x 5 0 and (b) along
to use the largest admissible boundary element size, from the cross-stream y 5 0 direction are presented. Strong
computing considerations. Unfortunately, determination gradients can be observed, especially for the highest values
of the optimal choice of N and N9, which depends on s, of the Peclet number. They result from (i) the C0 time
is not a trivial task! discontinuity between the initial condition and the bound-

ary conditions at t 5 0 and (ii) from the characteristic—using a narrow strip for the extension is possible.
This allows the use of fine N 3 N grids for solving the boundary layer of this advection–diffusion problem. The

analytical asymptotic solutions are given by dotted linesperiodic problem, since the dimension of matrix (19) is
then small and, approximately, linearly increasing with and one observes, for the final time values, good agreement

between the computed and the analytical profiles. As ex-respect to N.
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FIG. 12. Advection-diffusion problem, Pe 5 10: solution along theFIG. 11. Advection-diffusion problem, Pe 5 1: solution along the
axis (a) x 5 0 and (b) y 5 0 at different times. Comparison with the axis (a) x 5 0 and (b) y 5 0 at different times. Comparison with the

asymptotic analytical solution.asymptotic analytical solution.

force term, and then by using Fourier analysis to get thepected, when the convective phenomenon is very dominant
periodic solution;(Pe 5 100) the solution is very stiff, especially in the bound-

ary layer obtained at the final time. But even in this difficult —using boundary elements to enforce the boundary con-
case, one observes that the strong gradients are well com- ditions.
puted by the algorithm.

In order to obtain a real spectral method, we have been
especially interested in developing highly accurate algo-6. CONCLUSION
rithms. Mainly, it has been pointed out that the conver-
gence rate was controlled by the Fourier approximation,By focusing on the advection–diffusion equation, a nu-
until a limiting value associated with the number of bound-merical algorithm has been presented for handling in an
ary elements was found. The accuracy of the spectral solu-efficient way the PDE in nD (1 # n # 3) geometry of
tion essentially depends on the regularity of the body forcecomplex shapes. This spectral embedding method is based
term extension, and so it was at first necessary to developon the following ideas:
an efficient extension algorithm. The one presented here

—using a semi-implicit finite difference scheme in time, yields a regular periodic source term and efficiency is ob-
in which the linear terms are treated implicitly and the tained, out of the 1D situation, by using an extension strip.
non-linear ones explicitly, in order to produce at each time- Concerning the boundary element part of the algorithm, it
step an elliptic linear problem (as is generally done with has been focused on the Helmholtz equation which results
spectral methods); from the finite difference approximation of the unsteady

advection–diffusion equation. The single layer formulation—using an embedding approach for handling the body
force term, by producing a periodic extension of this body has been used to overcome the classical problem of the
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the Peclet number, from 1 to 100, showing that the pro-
posed method can be used for convection-dominated prob-
lems, as well as diffusive ones. Moreover, let us conclude
by mentioning that in the case of very stiff boundary layers,
a natural extension of the method would be to substitute
a wavelet approximation to the Fourier approximation.
The main advantage of using wavelets would be the possi-
bility of using stretched grids, unlike the Fourier approxi-
mation which requires uniform grids.
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